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Abstract

Ontologies have become an important means for

structuring information and information systems and,

hence, important in knowledge as well as in software

engineering. However, there remains the problem of

engineering large and adequate ontologies within short

time frames in order to keep costs low. For this pur-

pose, e�orts have been made to facilitate the ontol-

ogy engineering process, in particular the acquisition

of ontologies from domain texts. We present a general

architecture for discovering conceptual structures and

engineering ontologies. Based on the architecture we

propose a new approach to extend current approaches,

who mostly focus on the semi-automatic acquisition of

taxonomies, by the discovery of non-taxonomic concep-

tual relations. We use a generalized association rule

algorithm that does not only detect relations between

concepts, but also determines the appropriate level of

abstraction at which to de�ne relations.

1 Introduction

Ontologies1 have shown their usefulness in appli-
cation areas such as intelligent information integra-
tion or information brokering by providing a technical
means to share and exchange knowledge and/or infor-
mation between humans and/or machines [19, 1, 17].
Hence, their importance for software and knowledge
engineering may hardly be overestimated. Neverthe-
less, their wide-spread usage is still hindered by on-
tology engineering being rather time-consuming and,
hence, expensive. Therefore a number of propos-

1We restrict our attention in this paper to domain ontologies

that describe a particular small model of of the world as relevant

to applications, in contrast to top-level ontologies and represen-

tational ontologies that aim at the description of generally ap-

plicable conceptual structures and meta-structures, respectively,

and that are mostly based on philosophical and logical point of

views rather than focused on applications.

als have been made to facilitate ontology engineer-
ing through automatic discovery from domain data,
domain-speci�c natural language texts in particular
(cf. [3, 4, 5, 11, 13, 20]). However, we see two pit-
falls occur in most of these seminal approaches. First,
these investigations have mostly been conceived in iso-
lation from actual issues of ontology engineering sys-
tems. A framework for classi�cation and evaluation of
approaches is lacking. Thus, the overall picture of what
resources may or should be used in ontology discovery
approaches remains rather vague and has not been un-
der discussion at all. Second, most of these approaches
have only looked at how to learn the taxonomic part of
ontologies. In applications like [19, 1, 17], an ontology
O often boils down to a an object model represented
by a set of concepts C, which are taxonomically re-
lated by the transitive ISA relation H � C � C and
non-taxonomically related by named object relations
R� � C�C�String. On the basis of the object model
a set of logical axioms, A, enforce semantic constraints.
Common approaches mostly focus on the automatic ac-
quisition of C and H and often neglect the importance
of interlinkage between concepts. Though taxonomic
knowledge is certainly of utmost importance, major ef-
forts in ontology engineering must be dedicated to the
de�nition of non-taxonomic conceptual relationships,
e.g. hasPart relations between concepts. The deter-
mination of non-taxonomic conceptual relationships is
not this well-researched.2 In fact, it appears to be the
more intricate task as, in general, it is less well known
how many and what type of conceptual relationships
should be modeled in a particular ontology.

This paper presents a framework for semi-automatic
engineering of ontologies. Within our general archi-
tecture (Section 2), we embed a new approach for
discovering non-taxonomic conceptual relations from
text and, hence, for facilitating the engineering of non-

2An informal survey performed by Katja Markert found that

a number of prominent and freely available ontologies, like Word-

Net or Sensus, lacked rich interlinking of concepts through con-

ceptual relations.



taxonomic relations. Building on the taxonomic part
of the ontology, our approach analyzes domain-speci�c
texts. It uses shallow text processing methods to iden-
tify linguistically related pairs of words (cf. Section 3).
An algorithm for discovering generalized association
rules analyzes statistical information about the linguis-
tic output (cf. Section 4). Thereby, it uses the back-
ground knowledge from the taxonomy in order to pro-
pose relations at the appropriate level of abstraction.
For instance, the linguistic processing may �nd that
the word \costs" frequently co-occurs with each of the
words \hotel", \guest house", and \youth hostel" in
sentences such as (1).3

(1) Costs at the youth hostel amount to $ 20 per night.

From this statistical linguistic data our approach de-
rives correlations at the conceptual level, viz. between
the concept Costs and the concepts, Hotel, Guest House,
and Youth Hostel. The discovery algorithm determines
support and con�dence measures for the relationships
between these three pairs, as well as for relation-
ships at higher levels of abstraction, such as between
Accommodation and Costs. In a �nal step, the algorithm
determines the level of abstraction most suited to de-
scribe the conceptual relationships by pruning appear-
ingly less adequate ones. Here, the relation between
Accommodation and Costs may be proposed for inclusion
in the ontology. A more comprehensive example will
be presented in Section 5. We conclude with a survey
of related work and a short remark on the acquisition
of ontological axioms, A.

2 System Architecture

The purpose of this section is to give an overview
of the architecture of our system Text-To-Onto (cf. the
overall schema in Figure 1 and the snapshot in Fig-
ure 2). The process of semi-automatic ontology ac-
quisition is embedded in an application that comprises
several core features described as a kind of pipeline
in the following. Nevertheless, the reader may bear
in mind that the overall development of ontologies re-
mains a cyclic process (cf. [9]). In fact, we provide a
broad set of interactions such that the engineer may
start with primitive methods �rst. These methods
require very little or even no background knowledge,
but they may also be restricted to return only sim-
ple hints, like term frequencies. While the knowledge
model matures during the semi-automatic engineering

3For ease of presentation we mostly give English examples,

however, our evaluation is based on our implementation that

processes German texts.

process, the engineer may turn towards more advanced
and more knowledge-intensive algorithms, such as our
mechanism for discovering generalized relations.
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Figure 1. Architecture of the Ontology Learn-
ing Environment

Text & Processing Management Component.

The ontology engineer uses the Text & ProcessingMan-
agement Component to select domain texts exploited
in the further discovery process. She chooses among a
set of text (pre-)processing methods available on the
Text Processing Server and among a set of algorithms
available at the Learning & Discovering component.
The former module returns text that is annotated by
XML and this XML-tagged text is fed to the Learning
& Discovering component.

Text Processing Server. The Text Processing
Server may comprise a broad set of di�erent methods.
In our case, it contains a shallow text processor based
on the core system SMES (Saarbr�ucken Message Ex-
traction System). SMES is a system that performs
syntactic analysis on natural language documents. Its
functionality is described in detail in Section 3. In gen-
eral, the Text Processing Server is organized in mod-
ules, such as a tokenizer, morphological and lexical pro-
cessing, and chunk parsing that use lexical resources to
produce mixed syntactic/semantic information. The
results of text processing are stored in annotations us-
ing XML-tagged text.

Lexical DB & Domain Lexicon. Syntactic pro-
cessing relies on lexical knowledge. In our system,
SMES accesses a lexical database with more than
120.000 stem entries and more than 12,000 subcate-
gorization frames that are used for lexical analysis and



Figure 2. The Text-To-Onto Ontology Learning Environment

chunk parsing. The domain-speci�c part of the lexi-
con (abbreviated \domain lexicon"; cf. left lower part
of Figure 2) associates word stems with concepts avail-

able in the concept taxonomy. Hence, it links syntactic
information with semantic knowledge that may be fur-
ther re�ned in the ontology.

Learning & Discovering component. The Learn-
ing & Discovering component uses various discovering
methods on the annotated texts, e.g. term extraction
methods for concept acquisition. Our scenario for dis-
covering non-taxonomic relations uses the learning al-
gorithm for discovering generalized association rules
described in Section 4. Conceptual structures that ex-
ist at learning time (e.g. a concept taxonomy) may
be incorporated into the learning algorithms as back-
ground knowledge. The evaluation of the applied al-
gorithms such as described in [10] is performed in a
submodule based on the results of the learning algo-
rithm.

Ontology Engineering Environment. The Ontol-
ogy Engineering Environment (OntoEdit4) supports
the ontology engineer in semi-automatically adding
newly discovered conceptual structures to the ontol-
ogy.5 The screenshot depicted in Figure 2 shows on
the left side the object-model backbone of an ontology,
i.e. the sets C;H , and R�. In addition to core ca-
pabilities for structuring the ontology, the engineering
environment provides some additional features for the
purpose of documentation, maintenance, and ontology
exchange. OntoEdit internally stores ontologies using
an XML serialization of the ontology model.

4OntoEdit is a submodule of the Ontology Learning Environ-

ment \Text-To-Onto".
5A comprehensive description of the ontology engineering sys-

tem OntoEdit and the underlying methodology is given in [16].



3 Shallow Text Processing

Our approach has been implemented on top of
SMES (Saarbr�ucken Message Extraction System), a
shallow text processor for German (cf. [12]) that has
been adapted to the tourism domain. This is a generic
component that adheres to several principles that are
crucial for our objectives. (i), it is fast fast and robust,
(ii), it yields dependency relations between terms, and,
(iii), it returns pairs of concepts the coupling of which
is motivated through linguistic constraints on the cor-
responding textual terms. In addition, we made some
minor changes such that principle (iv), linguistic pro-
cessing delivers a high recall on the number of depen-
dency relations occuring in a text, is also guaranteed.
We here give a short survey on SMES in order to pro-
vide the reader with a comprehensive picture of what
underlies our system.

The Architecture of our Text Processing Server,
SMES, comprises a tokenizer based on regular expres-
sions, a lexical analysis component, and a chunk parser.

Tokenizer. Its main task is to scan the text in order to
identify boundaries of words and complex expressions
like \$20.00" or \Mecklenburg-Vorpommern"6, and to
expand abbreviations.

Lexical Analysis uses lexical information to perform,
(1), morphological analysis, i.e., the identi�cation of
the canonical common stem of a set of related word
forms and the analysis of compounds, (2), recognition
of name entities, (3), retrieval of domain-speci�c infor-
mation, and, (4), part-of-speech tagging:

1. In German compounds are extremely frequent
and, hence, their analysis into their parts, e.g.
\database" becoming \data" and \base", is crucial
and may yield interesting relationships between
concepts. Furthermore, morphological analysis re-
turns possible readings for the words concerned,
e.g. the noun and the verb reading for a word like
\man" in \The old man the boats."

2. Processing of named entities includes the recog-
nition of proper and company names like \Ho-
tel Schwarzer Adler" as single, complex entities,
as well as the recognition and transformation of
complex time and date expressions into a canon-
ical format, e.g. \January 1st, 2000" becomes
\1/1/2000".

3. The next step associates single words or complex
expressions with a concept from the ontology if

6Mecklenburg-Vorpommern is a region in the north east of

Germany.

a corresponding entry in the domain-speci�c part
of the lexicon exists. E.g., the expression \Hotel
Schwarzer Adler" is associated with the concept
Hotel.

4. Finally, part-of-speech tagging disambiguates the
reading returned from morphological analysis of
words or complex expressions using the local con-
text.

Chunk Parser. SMES uses weighted �nite state
transducers to eÆciently process phrasal and sentential
patterns. The parser works on the phrasal level, before
it analyzes the overall sentence. Grammatical func-
tions (such as subject, direct-object) are determined
for each dependency-based sentential structure on the
basis of subcategorization frames in the lexicon.

Dependency Relations. Our primary output de-
rived from SMES consists of dependency relations [7]
found through lexical analysis (compound processing)
and through parsing at the phrase and sentential level.
It is important for our approach that on these levels
syntactic dependency relations coincide rather closely
with semantic relations that are often found to hold be-

tween the very same entities (cf. [6]). Thus, we derived
our motivation to output those conceptual pairs to the
learning algorithm the corresponding terms of which
are dependentially related. Thereby, the grammati-
cal dependency relation need not even hold directly
between two conceptually meaningful entities. For in-
stance, in (2) \Hotel Schwarzer Adler" and \Rostock",
the concepts of which appear in the ontology as Hotel

and City, respectively, are not directly connected by
a dependency relation. However, the preposition \in"
acts as a mediator that incurs the conceptual pairing
of Hotel with City (cf. [14] for a complete survey of me-
diated conceptual relationships).

(2) The Hotel Schwarzer Adler in Rostock celebrates
Christmas.

Heuristics. Chunk parsing such as performed by
SMES still returns many phrasal entities that are not
related within or across sentence boundaries. This
however means that our approach would be doomed
to miss many relations that often occur in the corpus,
but that may not be detected due to the limited ca-
pabilities of SMES. For instance, it does not attach
prepositional phrases in any way and it does not han-
dle anaphora, to name but two desiderata. We have
decided that we needed a high recall of the linguistic
dependency relations involved, even if that would in-
cur a loss of linguistic precision. The motivation is
that with a low recall of dependency relations the sub-
sequent algorithm may learn only very little, while with



less precision the learning algorithm may still sort out
part of the noise. Therefore, the SMES output has
been extended to include heuristic correlations beside
linguistics-based dependency relations:

� The NP-PP-heuristic attaches all prepositional
phrases to adjacent noun phrases.

� The sentence-heuristic relates all concepts con-
tained in one sentence if other criteria fail. This
is a crude heuristic that needs further re�nement.
However, we found that it yielded many interest-
ing relations, e.g. for enumerations, which could
not be parsed successfully.

� The title-heuristic is very speci�c for our domain.
It links the concepts such as referred to in the
HTML title tags with all the concepts contained
in the the overall document. This strategy might
utterly fail in other domains, but it was successful
for our hotel and sight descriptions.

To sum up, linguistic processing outputs a set of
concept pairs, CP := f(ai;1; ai;2)jai;j 2 Cg. Their cou-
pling is motivated through various direct and mediated
linguistic constraints or by several general or domain-
speci�c heuristic strategies.

4 Learning Algorithm

Our learning mechanism is based on the algorithm
for discovering generalized association rules proposed
by Srikant and Agrawal [15]. Their algorithm �nds as-
sociations that occur between items, e.g. supermarket
products, in a set of transactions, e.g. customers' pur-
chases, and describes them at the appropriate level of
abstraction, e.g. \snacks are purchased together with
drinks" rather than \chips are purchased with beer"
and \peanuts are purchased with soda".

The basic association rule algorithm is provided with
a set of transactions T := ftiji = 1 : : : ng, where each
transaction ti consists of a set of items ti := fai;j jj =
1 : : :mi; ai;j 2 Cg and each item ai;j is from a set of
concepts C. The algorithm computes association rules

Xk ) Yk (Xk; Yk � C;Xk \ Yk = fg) such that mea-
sures for support and con�dence exceed user-de�ned
thresholds. Thereby, support of a rule Xk ) Yk is the
percentage of transactions that contain Xk [ Yk as a
subset, and con�dence for Xk ) Yk is de�ned as the
percentage of transactions that Yk is seen when Xk ap-
pears in a transaction, viz.

(3) support(Xk ) Yk) =
jftijXk [ Yk � tigj

n

(4) con�dence(Xk ) Yk) =
jftijXk [ Yk � tigj
jftijXk � tigj

Srikant and Agrawal have extended this basic mech-
anism to determine associations at the right level of
a taxonomy, formally given by a taxonomic relation
H � C � C. For this purpose, they �rst extend each
transaction ti to also include each ancestor of a partic-
ular item ai;j , i.e. t

0

i := ti[fai;lj(ai;j ; ai;l) 2 Hg. Then,
they compute con�dence and support for all possible
association rules Xk ) Yk where Yk does not contain
an ancestor of Xk as this would be a trivially valid
association. Finally, they prune all those association
rules Xk ) Yk that are subsumed by an \ancestral"
rule X̂k ) Ŷk, the itemsets X̂k; Ŷk of which only con-
tain ancestors or identical items of their corresponding
itemset in Xk ) Yk.

For the discovery of conceptual relations we may
directly build on their scheme, as described in the fol-
lowing four steps that summarize our learning module:

1. Determine T := ffai;1; ai;2; : : : ; ai;m0

i
gj(ai;1; ai;2)

2 CP^l � 3! ((ai;1; ai;l) 2 H_(ai;2; ai;l) 2 H)g.

2. Determine support for all association rules Xk )

Yk, where jXkj = jYkj = 1.

3. Determine con�dence for all association rules
Xk ) Yk that exceed user-de�ned support in step
2.

4. Output association rules that exceed user-de�ned
con�dence in step 3 and that are not pruned by
ancestral rules with higher or equal con�dence and
support.

Thus, the output of association rules are pairs of
concepts that are proposed to the engineer for inclusion
in the ontology as non-taxonomic relations D := fdig.
The reader may note two important observations here.

First, we abstract from the naming of relations in
our approach. Though this may certainly lead to un-
wanted conations of relations, like (Person,Person,hit)
with (Person,Person,love), we consider this a secondary
concern for our interactive approach | though, of
course, this is a major issue for further research.

Second, we here have chosen a baseline approach
considering the determination of the set of transac-
tions T . Actually, one may conceive of many strategies
that cluster multiple concept pairs into one transac-
tion. For instance, given a set of 100 texts each de-
scribing a particular hotel in detail. Each hotel might
come with an address, but it might also have an elab-
orate description of the di�erent types of public and
private rooms and their furnishing resulting in 10,000
concept pairs returned from linguistic processing. Our
baseline choice considers each concept pair as a trans-
action. Then support for the rule fHotelg)fAddressg
is equal or, much more probably, (far) less than 1%,



while rules about rooms and their furnishing or their
style, like fRoomg)fBedg, might achieve ratings of sev-
eral percentage points. This means that an important
relationship between fHotelg and fAddressg might get
lost among other conceptual relationships. In contrast,
if one considers complete texts to constitute transac-
tions, an ideal linguistic processor might lead to more
balanced support measures for fHotelg)fAddressg and
fRoomg)fBedg of up to 100% each.

Thus, discovery might bene�t when background
knowledge about the domain texts is exploited for com-
piling transactions. In the future, we will have to fur-
ther investigate the e�ects of di�erent strategies.

5 Example

For the purpose of illustration, this chapter gives
a comprehensive example, which is based on our ac-
tual experiments. We have processed a text corpus
by a WWW provider for tourist information (URL:
http://www.all-in-all.de). The corpus describes actual
objects, like locations, accomodations, furnishings of

accomodations, administrative information, or cultural
events, such as given in the following example sen-
tences.

(5) a. Mecklenburg's sch�onstes Hotel liegt in Ros-
tock. (Mecklenburg's most beautiful hotel is
located in Rostock.)

b. Ein besonderer Service f�ur unsere G�aste
ist der Fris�orsalon in unserem Hotel. (A
hairdresser in our hotel is a special service for
our guests.)

c. Das Hotel Mercure hat Balkone mit direk-
tem Strandzugang. (The hotel Mercure o�ers
balconies with direct access to the beach.)

d. Alle Zimmer sind mit TV , Telefon, Modem
und Minibar ausgestattet. (All rooms have
TV , telephone, modem and minibar.)

Processing the example sentences (5a) and (5b),
SMES (Section 3) outputs dependency relations be-
tween the terms, which are indicated in slanted fonts

(and some more). In sentences (5c) and (5d) the
heuristic for prepositional phrase-attachment and the
sentence heuristic relate pairs of terms (marked by
slanted fonts), respectively. Thus, four concept pairs {
among many others { are derived with knowledge from
the domain lexicon (cf. Table 1).

The algorithm for learning generalized association
rules (cf. Section 4) uses the domain taxonomy, an ex-
cerpt of which is depicted in Figure 3, and the concept
pairs from above (among many other concept pairs).
In our actual experiments, we have de�ned a set of 284

Table 1. Related pairs of concepts
Term1 ai;1 Term2 ai;2

Mecklenburgs area hotel hotel

hairdresser hairdresser hotel hotel

balconies balcony access access

room room TV television

concepts, C := faig, and the domain-speci�c part of
the lexicon has contained 486 entries referring to one
of these concepts.

root

furnishing

accomodation
event

area
...

hotel youth hostel
...

cityregion ...

Figure 3. An example scenario

The learning algorithm discovered a large number
of interesting and important non-taxonomic concep-
tual relations. A few of them are listed in Table 2.
Note that in this table we also list two conceptual
pairs, viz. (area, hotel) and (room, television), that are
not presented to the user, but that are pruned. The
reason is that there are ancestral association rules, viz.
(area, accomodation) and (room, furnishing), respectively
with higher con�dence and support measures.

Table 2. Examples of discovered relations
Discovered relation Con�dence Support

(area, accomodation) 0.38 0.04

(area, hotel) 0.1 0.03

(room, furnishing) 0.39 0.03

(room, television) 0.29 0.02

(accomodation, address) 0.34 0.05

(restaurant, accomodation) 0.33 0.02

6 Related Work

As mentioned before, most researchers in the area
of discovering conceptual relations have \only" consid-
ered the learning of taxonomic relations. To mention
but a few, we refer to some fairly recent work, e.g.,
by Hahn & Schnattinger [5] and Morin [11] who used
lexico-syntactic patterns with and without background



knowledge, respectively, in order to acquire taxonomic
knowledge.

Other researchers also pursue a similar principle
goal, viz. the semi-automatic engineering of ontologies

from text. Our architectural framework (cf. Section
2) provides a comprehensive picture into which these
other approaches may be subsumed [18, 2, 4]. For ex-
ample in [2] the system TERMINAE for building a
domain ontology using a terminology- based approach
is described. The underlying techniques are restricted
to statistical term occurrences, which are also a part
of our system Text-To-Onto. More advanced machine
learning techniques are applied in the ASIUM system
presented by Faure and Nedellec [4]. The system is
able to acquire taxonomic relations and subcategoriza-
tion frames of verbs based on syntactic input. The
ASIUM system hierarchically clusters nouns based on
the verbs that they co-occur with and vice versa. How-
ever, this approach and the algorithms developed may
easily be integrated into our framework, so that the
acquired ontology may be re�ned further.

Regarding the acquisition of non-taxonomic concep-
tual relations we want to give a somewhat closer look
at related approaches. For purposes of natural lan-
guage processing, several researchers have looked into
the acquisition of verb meaning, subcategorizations of
verb frames in particular. Resnik [13] has done some of
the earliest work in this category. His model is based
on the distribution of predicates and their arguments
in order to �nd selectional constraints and, hence, to
reject semantically illegitimate propositions like \The
number 2 is blue." His approach combines information-
theoretic measures with background knowledge of a hi-
erarchy given by the WordNet taxonomy. He is able
to partially account for the appropriate level of rela-
tions within the taxonomy by trading o� a marginal
class probability against a conditional class probabil-
ity, but he does not give any evaluation measures for
his approach. He considers the question of �nding ap-
propriate levels of generalization within a taxonomy to
be very intriguing and concedes that further research
is required on this topic (cf. p. 123f in [13]) .

Wiemer-Hastings et al. [20] aim beyond the learn-
ing of selectional constraints, as they report about in-
ferring the meanings of unknown verbs from context.
Using WordNet as background knowledge, their sys-
tem, Camille, generates hypotheses for verb meanings
from linguistic and conceptual evidence. A statistical
analysis identi�es relevant syntactic and semantic cues
that characterize the semantic meaning of a verb, e.g.
a terrorist actor and a human direct object are both
diagnostic for the word \kidnap".

The proposal by Byrd and Ravin [3] comes closest

to our own work. They extract named relations when
they �nd particular syntactic patterns, such as an ap-
positive phrase. They derive unnamed relations from
concepts that co-occur by calculating the measure for
mutual information between terms | rather similar as
we do. Eventually, however, it is hard to assess their
approach, as their description is rather high-level and
lacks concise de�nitions.

To contrast our approach with the research just
cited, we want to mention that all the verb-centered
approaches may miss important conceptual relations
not mediated by verbs. All of the cited approaches
except [13] neglect the importance of the appropriate
level of abstraction. Regarding evaluation, they have
only appealed to the intuition of the reader [3, 4], fo-
cused at a distinguished level in the hierarchy [20] or
lacked rigorous measures for evaluation [13]. We have
evaluated our approach in blind experiments using two
standard and our original RLA measure (cf. [10] for a
more detailed description). The latter has been thor-
oughly tested for plausibility and validated against the
set of all possible relations.

7 Conclusion

We have presented an approach towards learning
non-taxonomic conceptual relations from text embed-
ded in a general architecture for semi-automatic acqui-
sition of ontologies. We have evaluated the discovery
approach on a set of real world texts against concep-
tual relations that had been modeled by hand. For
this purpose, we used standard measures, viz. precision
and recall, but we also developed an evaluation metrics
that took into account the scales of adequacy preva-
lent in our target structures. The evaluation showed
that though our approach is too weak for fully auto-
matic discovery of non-taxonomic conceptual relations,
it is highly adequate to help the ontology engineer with
modeling the ontology through proposing conceptual
relations.

For the future much work remains to be done. We
want to highlight but two major issues. The naming
and the categorization of relations into a relation hi-

erarchy needs to be approached. We want to combine
some of the related work on the acquisition of verb
meaning with our own proposal in order to approach
this objective.

Then, there remains the topic of engineering onto-
logical axioms. Naturally, this is worth several papers
on its own. We may just mention that we envision sev-
eral positions from which to start. We have conceived
a principled approach to the engineering of ontologi-
cal axioms [16]. Our approach may be extended to-



wards an interactive mode that has been proposed in [8]
for the acquisition of integrity constraints (aka axioms)
aiming at the modeling of relational databases. Other
than that, we want to explore possibilities o�ered by
inductive logic programming methods | which, of
course, presume the availability of corresponding data
in order to allow for induction of logical rules.
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